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Despite the fast increase in expertise developed in the field of electron

crystallography, dynamic scattering effects still remain a severe obstacle in this

field, a hurdle that is being circumvented rather than fully tackled. In this paper,

a new way of straightforward interpretation of conventional many-beam zone-

axis dynamical electron diffraction patterns is presented that helps to solve the

phase problem for non-centrosymmetric two-dimensional crystal structures, in

particular if these contain only a few heavier atoms. While the implementation

of this method is easiest for fairly weak multiple scattering, its extension to

arbitrarily strong dynamical effects is mentioned. A method to obtain high-

resolution diffraction data in the presence of specimen bending is proposed.

One of the properties of electron scattering is its approxi-

mately 103 times greater scattering cross section over X-rays.

Together with the focusability of the electron beam by elec-

tromagnetic lenses, this means that much smaller objects

(laterally and also in the beam direction) can be studied by

electron beams than with X-rays or neutrons. However,

multiple scattering, a ‘side effect’ of the large scattering cross

section, is feared by many to distort the data, putting the use of

conventional methods for structure determination in jeopardy,

since, apart from recent developments, all of them are based

on the single scattering approximation. For this reason, high

electron beam energies, thin crystals and even precessing

illumination (Marks & Sinkler, 2003) are used in order to

avoid dynamic scattering effects, despite the fact that it is well

known that ‘high orders of interaction eliminate the ambi-

guities inherent in single scattering and enhance the sensitivity

to structural detail’ (Moodie & Fehlmann, 1993).

Attacks on the inversion problem in dynamic scattering

theory have a long history (Allen et al., 1998; Spence et al.,

1999; Rez, 1999). However, I will show that the complicated

multiple scattering equations can be approximated by very

simple ones for two-dimensional crystals, and that the

presence of dynamic scattering can drastically simplify the

structure-solving process in the presence of medium–heavy

atoms in a ‘sea’ of lighter ones.

Prominent examples of such two-dimensional structures are

proteins that crystallize in monolayers as well as the phos-

pholipid bilayers they are embedded in when in their native

state. Biological cell membranes defining the interfaces

between cells, the building blocks of living organisms, and in

eukaryotic cells also their subcompartments, are essential for

making life, as we know it, possible. About 40% of the

sequenced genes appear to code for membrane proteins, yet

only 40 membrane protein structures are available at atomic

resolution (Engel, 2003). Surface membranes found on all cells

and the membranes that line eukaryotic organelles have the

same basic architecture: a phospholipid bilayer. While atomic

force microscopy (AFM) is being applied to the study of

surfaces of such two-dimensional crystals, transmission elec-

tron microscopy is the only method capable of studying their

inner structure in their functional state [see recent reviews by

Glaeser & Downing (1993) and Engel (2003)] or when crys-

tallized in two dimensions.

The 20 amino acids forming the basis for all proteins consist

of H (Z ¼ 1), C (Z ¼ 6), N (Z ¼ 7) and O (Z ¼ 8) atoms.

Only two of them (cysteine and methionine) contain an S

(Z ¼ 16) atom. Assuming the proteins encoded by the yeast

genome to represent the ‘typical’ eukaryotic protein, the

sulfur-containing amino acids are rather rare and together

with tryptophan they make up less than 5% of the amino acids

in a protein (Lodish et al., 2000), i.e. there is about 1 S atom

per every 30 amino acids or 3400 Da of protein molecular

weight, which corresponds to 15 S atoms in a 51000 Da

protein. Example calculations in this work will therefore focus

on organic structures, demonstrating its potential usefulness in

this field.

Recently, approaches that use the sensitivity of multiply

scattered beams to structure-factor phases have proven useful

in X-ray scattering near three-beam points (Chang, 1982;

Juretschke, 1982; Shen, 1997). Apart from grazing-incidence

geometry (Chang et al., 1998), diffraction from two-dimen-

sional crystals does not allow the selection of such three-beam

conditions since the relrods in reciprocal space normal to the

specimen surface are continuous and the crystal shape func-

tion in that direction is sharply peaked (zero excitation error)

at the intersection of the Ewald sphere with the relrods (see

Fig. 1). This means that every point in the two-dimensional

crystal lattice will contribute to the multiple scattering process,

independently of crystal tilt. Since their effective wavelength is

proportional to 1=cosð�Þ (� ¼ angle between the direction of



the incident electron beam and the surface normal), bulk-

structure-probing electrons will be subject to very strong

dynamic scattering and absorption for grazing incidence. In

the remainder of this paper, it will be demonstrated that a

large number of beams participating in the multiple scattering

process is actually desirable, which is why the zone-axis case

will be used for demonstration.

Defining modified three-dimensional structure factors

U 0g ¼ tUg ¼
1

ja� bj

XNatom

j¼1

fjðjgj=2Þ expð2�irj � gÞ

[a and b are unit-cell vectors in the plane of the crystal,

fjðs ¼ jgj=2Þ are the electron scattering factors and rj the

positions of the atoms in a unit cell, and t is the specimen

thickness], we may, using a recent expansion of the matrix

exponential of the sum of two matrices (Koch & Spence,

2003), write down a ‘scattering-path’ expansion of the Bloch-

wave multiple scattering formalism (Humphreys, 1979), which

expands the dynamic electron wavefunction �g at the recip-

rocal-lattice point g in all contributing Umweg excitation

paths. These paths may involve just the reciprocal-lattice point

g (single scattering), the lattice points h and g� h (double

scattering), or k, h� k and g� h (triple scattering), or even

longer paths. Since the crystal is non-periodic in the z direction

and exactly one unit cell thick, we can define the unit-cell

vector c to be normal to the plane defined by a and b. The unit-

cell volume is then � ¼ ða� bÞ � c ¼ ja� bjt, even for

triclinic unit cells.

Owing to the low density of most organic specimens, the

scattering order needed to approximate the dynamic scat-

tering sufficiently is rather low. The contribution of the single

scattering path to the scattered electron wavefunction is (Koch

& Spence, 2003)

�ð1Þg ¼

U0g

t

expði�t�g=knÞ � 1

�g

; �g 6¼ 0

U0g

t

i�t

kn

¼ U0g
i�

kn

; �g ¼ 0:

8>><
>>:

ð1Þ

�g ¼ k2 � ðkþ gÞ2 � 2knsg, where sg is the excitation error, i.e.

the distance along the relrod between the Ewald sphere and

the reciprocal-lattice point g. k is the incident wavevector

(jkj ¼ k ¼ 1=�) and kn is the component of the incident

electron wavevector normal to the crystal surface, i.e. anti-

parallel to c.

In order to properly account for the presence of the two

surfaces of a two-dimensional crystal, we must add two semi-

infinite slabs of vacuum to both top and bottom of the struc-

ture, thus taking the limit t!1. It then becomes very clear

from (1) that, if U0g varies smoothly with gz, all terms with

�g 6¼ 0 have negligible contributions because of their inverse

proportionality to the thickness t. This is equivalent to the fact

that the scattering potential of two-dimensional crystals is

continuous in the z direction, and can therefore be intersected

by the Ewald sphere, as has already been mentioned.

Using the general expression from Koch & Spence (2003),

we see that the same is true for all the higher-order scattering

contributions as well. We may thus write the multiple scat-

tering expansion as

�g ¼
X1
j¼0

�ðjÞg

¼ �g þ
X1
j¼1

1

j!

i�

kn

� �j

�
X

g1

X
g2

. . .
X
gj�2

X
gj�1

U 0g�g1
U0g1�g2

. . . U0gj�2�gj�1
U 0gj�1

; ð2Þ

where each of the sums is over all reciprocal-lattice points on

the Ewald sphere. Although slightly different for finite crys-

tals, the multiple scattering expansions derived by Fujiwara

(1959) and earlier by Cowley & Moodie (1957) converge

exactly to this result for the special case treated here.

Since all the relrods intersect the Ewald sphere, each of the

sums is equivalent to a convolution of the array of U0g with

another copy of itself. The two-dimensional scattered electron

wavefunction can therefore be written in real space as

~��ðrÞ ¼ FTð�gÞ �
X1
j¼0

1

j!

i�

kn

� �j

�ðrÞj ¼ exp
i�

kn

�ðrÞ

� �
; ð3Þ

where �ðrÞ ¼ FTðU0gÞ, i.e. the two-dimensional Fourier trans-

form of the array of reciprocal-lattice points on the Ewald

sphere. In the limit of zero wavelength (jkj ! 1, perfectly

flat Ewald sphere), �ðrÞ is proportional to the potential of the

unit cell projected along the direction of the incident electron

beam. The only difference in this expression from the classical

phase-object approximation is that it includes the curvature of

the Ewald sphere. The ‘�’ relation has been used because,

strictly speaking, the convolution theorem is only exact for

periodic objects. Although the surface of the Ewald sphere

may be looked at as being periodic, it is not periodic in the

Cartesian coordinate system, nor does the high-energy

approximation in the Bloch-wave formalism used here include

any back scattering of electrons.
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Figure 1
Modulus of the scattering potential Ug for a two-dimensional graphite
crystal (a = 2.46, c = 6.7 Å), which has a thickness of one unit cell, i.e. two
graphene sheets. The reciprocal-space lattice is continuous normal to the
crystal surface. Zone-axis Ewald-sphere sections for 20, 100, 200, 300 kV,
as well as for 20 kV with beam tilts of �5� are shown.



The inverse Fourier transform of the diffraction pattern is

then

FT�1ðIgÞ ¼ FT�1ð�g�
�
gÞ

� ~��ðrÞ 	 ~��ð�rÞ

¼ 1þ i
�

kn

� �
½�ðrÞ 	 1� 1	�ð�rÞ�
 þ

�

kn

� �2

� ½��2ðrÞ 	 1� 1	�2ð�rÞ� þ�ðrÞ 	�ð�rÞ�


þ
i

2

�

kn

� �3

½��3
ðrÞ 	 1þ 1	�3

ð�rÞ�

þ�2ðrÞ 	�ð�rÞ� ��2ð�rÞ� 	�ðrÞ
 þO
�

kn

� �4

¼ PðreÞ
ðrÞ þ iPðimÞðrÞ: ð4Þ

All the terms involving the correlation with the constant

array 1 are constants and do not produce any spatially varying

contribution in the real or imaginary part of FT�1ðIgÞ. The

auto-correlation function

�ðrÞ 	�ð�rÞ� ¼
R

unit cell area

�ðr0Þ�ðr� r0Þ� d2r0

is real for any general real �ðrÞ. The first non-zero contribu-

tion to the imaginary part of FT�1ðIgÞ stems from the 1.5-fold

scattering defined by the terms in the last line of the expres-

sion above, which is the product of the first- order (�ð1Þg ) and

second-order Born approximation terms (�ð2Þg ) in expressions

(2) and (3).

Once the only means for structure determination, the

Patterson function has lost its importance in solving large

protein structures (Dorset, 1995). This is due to two reasons:

(i) N atoms per unit cell produce N2 � N peaks in the

Patterson function and (ii) the advantage of electron radiation

over X-rays in its sensitivity to light atoms reduces the ‘scat-

tering power’ of heavy atoms so that peaks due to heavy–light-

atom distances are not as clearly identifiable as in X-ray

diffraction.

Another reason why Patterson maps are difficult to use for

larger molecules is their poor resolution. It is limited to the

largest scattering vector present in the as-measured diffraction

pattern. Since only the scattering intensity can be measured,

the noise level increases linearly with the magnitude of the

structure factor, making it difficult to obtain diffraction data at

high resolution. Since already the first term of PðimÞ consists of

scattering paths of length 2, it includes linear contributions

from structure factors that lie outside the range of measured

spots. As already mentioned, even the first term of PðimÞ is

scaled with an additional �=kn factor. Any structure factor

whose magnitude is larger than �=kn (¼ � � � for normal

incidence) will contribute

with a better signal/noise

ratio to PðimÞ than to PðreÞ,

if only first- and 1.5-order

scattering events are

considered. Structure

factors at very large reci-

procal-lattice vectors may

have their strongest

contribution at even

higher scattering orders if

the product of wavelength

and specimen thickness is

large enough. This means

that, in principle, using

higher scattering orders

gives us access to higher

spatial resolution, even

beyond the range of

measured diffraction

spots.

Furthermore, the asym-

metry of PðimÞ removes the

strong central peak due to

the sum of isolated atom

scattering potentials [first-

and second-order terms in

expression (4)], which

often drowns peaks in the

Patterson function corre-

sponding to short inter-

atomic vectors.
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Figure 2
(a) Model of l-cysteine. (b) PðreÞ real part of Fourier transform of diffraction pattern (Patterson function). (c)
PðimÞ ¼ �PðimÞð�rÞ. The black circle in the center indicates the position of the S atom, which is not visible because it
sits at the center and is itself symmetric. (d)–( f ) same as (a)–(c), but with rotation of the molecule by 30� about the y
axis. The model has been placed in an artificial 12 � 12 Å unit cell for simulating the diffraction patterns. The
simulation includes first-, second- and third-order scattering. Diffraction data up to a real-space resolution of 1.15 Å
are included. The parameterized scattering factors by Doyle & Turner (1968) have been used, also for Figs. 1, 3
and 5.



Fig. 2 demonstrates the increased sharpness of features in

PðimÞ versus PðreÞ. PðimÞ is also very easy to interpret without

using any of the standard Patterson deconvolution techniques.

It allows a direct interpretation of the asymmetric part of the

structure. Although some contrast produced by vectors

between lighter atoms, such as O, N or C, is discernible, the

contrast due to the S atom and its lighter neighbors dominates,

i.e. one may speak of PðimÞ as being produced by the S atom.

Even the peaks corresponding to S–H vectors dominate over

those produced by atom pairs that do not involve sulfur. If

single atomic positions can be resolved, only a few tilt angles

are necessary to reconstruct the three-dimensional structure,

otherwise standard tomographic methods must be used.

However, one should take care to correct for Ewald-sphere

curvature effects, as will be discussed below. Once the asym-

metric part of the structure has been determined, it can be

used to deconvolve PðreÞ to obtain the symmetric part. The

presence of several heavier atoms in the structure will lead to a

superposition of PðimÞ ‘seen’ from the point of view of each one

of them. Disulfide bonds, for example, may therefore produce

very distinct double peaks if their projected distance can be

resolved.

In order to show the enhancement in resolution more

clearly, a one-dimensional test structure with different atomic

spacings has been used in simulations. The structure consists

of one S and three C atoms (see Fig. 3a), where �ðrÞ is scaled to

volts (m = mass of electron, e = charge of electron, h = Planck’s

constant). The distance between the two rightmost C atoms is

1.5 Å. The diffraction has been simulated using the simple

phase-object approximation for an electron-beam accelerating

voltage of 10 kV, neglecting Ewald-sphere curvature effects.

Since PðreÞðrÞ (Fig. 3b) is primarily a function of structure

factors Ug for jgj< ð1:78 ÅÞ�1, the 1.5 Å spacing between the

rightmost two C atoms cannot be resolved, and only a

maximum at a position between x ¼ 5 and x ¼ 6:5 Å is visible.

The higher scattering order and thus higher-resolution

contributions to PðimÞðrÞ (Fig. 3c), however, allow a clear

distinction between the two atomic positions.

Besides dynamic scattering effects, the curvature of the

Ewald sphere and, especially for two-dimensional organic

crystals, film bending are major issues in the interpretation of

high-resolution electron scattering data. Aside from the

insensitivity of diffraction data to lens aberrations, one of the

major advantages of using reciprocal-space information over

images is the constructive interference in the diffraction spots

produced by a crystalline specimen. By using highly coherent

field-emitting electron sources, even weak high-order reflec-

tions may be recorded with good signal-to-noise ratio.

However, this can only be done if the specimen is flat over the

area illuminated by the electron beam. If the convergence

angle of the incident electron beam, the vertical position of the

specimen with respect to that of the focused electron probe,

and the camera length are controlled, the area of the specimen

scattering into a single pixel of the recording medium should

be small enough to be considered flat. The definition of ‘flat’

depends on the desired resolution, however, more stringent

requirements may apply for interpreting the asymmetries in

the diffraction pattern than for the application of kinetic

scattering theory. Under carefully designed experimental

conditions, it has recently been possible to record convergent-

beam electron diffraction (CBED) patterns of beam-sensitive

organic material (Wu & Spence, 2002). In addition to spot

fading of radiation-sensitive material, the obtainable resolu-

tion of the diffraction data is also limited by the amount of film

bending and the combination of the above-mentioned par-

ameters.

Fig. 4 illustrates the experimental set-up for CBED from a

bent specimen. Different regions on the specimen are illumi-

nated with different illumination angles and recorded inde-
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Figure 3
(a) Potential ½h2=r2�mjej�ðrÞ
 of a one-dimensional test structure
consisting of one S and three C atoms at positions x ¼ 0, 3, 5 and
6.5 Å, respectively. Both the two-dimensional potential map as well as a
line scan along its axis of symmetry are shown. (b) The Patterson map
PðreÞ and its sum perpendicular to its axis of symmetry. (c) PðimÞ and its sum
perpendicular to its axis of symmetry. The last two C atoms with a spacing
of 1.5 Å between them are clearly resolved. The diffraction data giving
rise to both PðreÞ and PðimÞ have been limited to a real-space resolution of
1.78 Å using a top hat aperture function.

Figure 4
Diagram of convergent illumination of a bent specimen.



pendently using charge-coupled detectors (CCD), image

plates or film. The size of the illuminating spot may be larger

than the specimen, in which case the outline of the specimen

will be superimposed on each diffraction disc, making it

possible to map exactly the direction of the incident electron

beam to the specimen position. In the presence of film

bending, classical bent contours will appear across these

shadow images within each disc. By moving the convergent

probe and recording a second pattern, one can determine the

local orientation by comparing the set of diffraction intensities

across the specimen.

Example: the electron beam is normal to the specimen

surface at points A and B in Fig. 4, but not at all the points

between A and B. The diffraction patterns of the areas around

points A and B are recorded in a single detector pixel per

diffraction spot and are, apart from noise, equivalent. They

may thus be added together to increase the signal/noise ratio

by a factor of 21=2. Parallel illumination of the whole specimen

would produce coherent interference of diffraction patterns

corresponding to different film orientations and would

therefore not be a truly representative diffraction pattern.

Moving the electron beam will change the local illumination

angle at points A and B, causing their diffraction patterns to

differ in a very well defined way, because the change in local

illumination angle depends on the probe position and is thus

known. However, they will now agree with the diffraction

patterns from different areas of the specimen. The local film

orientation can now be mapped everywhere using these two

data sets.

The method of using higher-order scattering described in

this paper is, strictly speaking, only correct for electrons that

are incident normal to the specimen surface because even

kinematic theory predicts asymmetries of diffraction patterns

if a curved Ewald sphere intersects crystal truncation rods in

non-normal incidence geometries. These kinematic asym-

metries will bring additional terms to contribute to PðimÞðrÞ.

However, Fig. 5 demonstrates that, if we use the difference of

two diffraction patterns IdiffðgÞ of opposite tilt angle

IdiffðgÞ ¼ Iðþ�; gÞ � Ið��;�gÞ; ð5Þ

these kinematic asymmetries are removed but the dynamic

terms enhanced in PðimÞðrÞ.

Fig. 5 shows the reconstruction of the cysteine structure

from Fig. 2 for a deviation from surface normal incidence of

� ¼ �20� (a), 0� (c) and þ20� (b). Reconstructing each of the

tilted diffraction patterns will introduce artefacts due to

kinematical asymmetries (e.g. see arrow in Fig. 5b), but

reconstructing the difference [see expression (5)] of these two

diffraction patterns removes these artefacts, showing good

agreement with the reconstruction of the � ¼ 0� data (Fig. 5c).

The origin of kinematical asymmetries can easily be seen from

the tilted Ewald sphere sections in Fig. 1. The structure-factor

moduli jUgðþ�Þj and jUgð��Þj differ: the curved Ewald sphere

causes jgj 6¼ j � gj, while jUgðþ�Þj ¼ U�gð��Þj, � being the

angle between the specimen surface normal of the electron-

beam direction. The restored asymmetric potential map is now

the sum of two potential maps obtained by projecting the

cysteine structure with � ¼ �20�, as can be seen by the double

appearance of the O atom indicated by the two arrows in Fig.

5d). Although the area of the specimen coherently scattering

into a single diffraction pattern has been reduced in order to

circumvent film bending, diffraction patterns from a much

larger area can be recorded simultaneously. These patterns

can then be added up incoherently while correcting for their

tilt angle, thus providing a maximum of information and

signal/noise from a single diffraction pattern, since the

coherence conditions can be adjusted with several parameters

(specimen height, convergence angle and camera length/pixel

size of recording medium) to match the experimental condi-

tions (desired resolution, radiation sensitivity and amount of

film bending).

If a tomographic series of diffraction patterns is to be

reconstructed, the fact that projections of two oppositely tilted

structures are always obtained should be taken into account,

requiring a modification of the standard tomographic recon-

struction algorithms.

The fact that the application of kinematic scattering theory

for electron diffraction of the type of structures discussed in

this work has proven very successful poses the question about

the strength and thus the detectability of the multiple scat-

tering needed for this analysis. Some preliminary tests

including random noise have shown that the signal-to-noise

ratio must be better than that needed for the conventional
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Figure 5
(a) PðimÞðrÞ of the cysteine structure shown in Fig. 2 for an accelerating
voltage of 5 kVand a beam tilt of � ¼ �20�. (b), (c) PðimÞðrÞ for a beam tilt
of � ¼ þ20� and � ¼ 0�, respectively. (d) PðimÞðrÞ obtained from IdiffðgÞ ¼
Iðþ�; gÞ � Ið��;�gÞ; the signal is also almost twice as strong as in
(a)–(c).



analysis of diffraction patterns as one would expect. Since PðimÞ

is composed entirely of the asymmetric part of the diffraction

pattern, the noise must be considerably less than the differ-

ences in intensities between Friedel mates. Systematic Friedel

differences as large as 40% have been observed experimen-

tally in diffraction patterns of bacteriorhodopsin at 20 kV,

reducing to 10% at 120 kV (Glaeser & Ceska, 1989), a fact

that is very obvious from equation (4). The amount of dynamic

scattering is thus very sensitive to the kinetic energy of the

incident electrons. One might even consider fitting diffraction

data recorded at different accelerating voltages with a poly-

nomial in wavelength (1=kn / �). Using only the cubic portion

would filter out the 1.5-fold scattering part in the presence of

higher-order scattering. It may then even be advantageous to

use the 2.5 or higher (non-integer-order) scattering since the

peaks in PðimÞ become sharper with increasing scattering order.

For thicker specimen and low enough voltage, such higher-

order scattering will dominate the single scattering part. Since

a quantitative analysis of the signal-to-noise ratio required for

successful structure solving depends on the kinetic energy of

the electrons, the size of the structure (in particular the

portion of it that is asymmetric) and the required resolution, it

is beyond the scope of this paper.

In summary, it has been shown that a multiple (dynamic)

scattering interpretation of electron diffraction patterns of

two-dimensional crystal structures may greatly assist in solving

the phase problem, especially for the case of non-centrosym-

metric structures containing only a few heavy atoms. The role

of such ‘heavy’ atoms may even be played by sulfur or phos-

phorus already present in many organic structures such as

proteins or phospholipid bilayers. However, for exploring the

experimental merits of using the higher-order scattering terms,

it may be best to start with heavy-atom-stained specimens

whose phases can be solved for by conventional methods.

These would allow higher accelerating voltages to be used and

the effect of heavy-atom scattering power for phase determi-

nation in PðimÞ could directly be compared to that in PðreÞ. In

addition to a mathematical description of the method, ideas

for obtaining diffraction data from a bent specimen and

correcting for Ewald-sphere curvature artefacts have been

presented.
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the many very fruitful discussions that led to this work and

also Professor M. Rühle for his very generous support.
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